Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 571(7766): 528-531, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31341301

RESUMO

General relativity1 predicts that short-orbital-period binaries emit considerable amounts of gravitational radiation. The upcoming Laser Interferometer Space Antenna2 (LISA) is expected to detect tens of thousands of such systems3 but few have been identified4, of which only one5 is eclipsing-the double-white-dwarf binary SDSS J065133.338+284423.37, which has an orbital period of 12.75 minutes. Here we report the discovery of an eclipsing double-white-dwarf binary system, ZTF J153932.16+502738.8, with an orbital period of 6.91 minutes. This system has an orbit so compact that the entire binary could fit within the diameter of the planet Saturn. The system exhibits a deep eclipse, and a double-lined spectroscopic nature. We see rapid orbital decay, consistent with that expected from general relativity. ZTF J153932.16+502738.8 is a strong source of gravitational radiation close to the peak of LISA's sensitivity, and we expect it to be detected within the first week of LISA observations, once LISA launches in approximately 2034.

2.
Nature ; 561(7724): 498-501, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30258134

RESUMO

Luminous blue variables are massive, evolved stars that exhibit large variations in luminosity and size on timescales from months to years, with high associated rates of mass loss1-5. In addition to this on-going variability, these stars exhibit outburst phases, during which their size increases and as a result their effective temperature decreases, typically to about 9,000 kelvin3,6. Outbursts are believed to be caused by the radiation force on the cooler, more opaque, outer layers of the star balancing or even exceeding the force of gravity, although the exact mechanisms are unknown and cannot be determined using one-dimensional, spherically symmetric models of stars because such models cannot determine the physical processes that occur in this regime7. Here we report three-dimensional simulations of massive, radiation-dominated stars, which show that helium opacity has an important role in triggering outbursts and setting the observed effective temperature during outbursts of about 9,000 kelvin. It probably also triggers the episodic mass loss at rates of 10-7 to 10-5 solar masses per year. The peak in helium opacity is evident in our three-dimensional simulations only because the density and temperature of the stellar envelope (the outer part of the star near the photosphere) need to be determined self-consistently with convection, which cannot be done in one-dimensional models that assume spherical symmetry. The simulations reproduce observations of long-timescale variability, and predict that convection causes irregular oscillations in the radii of the stars and variations in brightness of 10-30 per cent on a typical timescale of a few days. The amplitudes of these short-timescale variations are predicted to be even larger for cooler stars (in the outburst phase). This short-timescale variability should be observable with high-cadence observations.

3.
Nature ; 551(7679): 210-213, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120417

RESUMO

Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

4.
Nature ; 529(7586): 364-7, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26727160

RESUMO

Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.

5.
Science ; 350(6259): 423-6, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494754

RESUMO

Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss.

6.
Nature ; 512(7512): 54-6, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25100479

RESUMO

Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.

7.
Nature ; 480(7377): 344-7, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170680

RESUMO

Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

8.
Nature ; 480(7377): 348-50, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170681

RESUMO

Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 2): 056405, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643174

RESUMO

We investigate the crystallization rate of a one-component plasma (OCP) in the context of classical nucleation theory. From our derivation of the free energy of an arbitrary distribution of solid clusters embedded in a liquid phase, we derive the steady-state nucleation rate of an OCP as a function of the Coulomb coupling parameter Gamma . Our result for the rate is in accordance with recent molecular dynamics simulations, but it is greater than that of previous analytical estimates by many orders of magnitude. Further molecular dynamics simulations of the nucleation rate of a supercooled liquid OCP for several values of Gamma would clarify the physics of this process.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(5 Pt 2): 056309, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12513598

RESUMO

It is shown that Moffatt's recent calculation regarding the viscous dissipation of circulating air underneath a spinning coin overlooked the importance of the finite width of the viscous boundary layer. Including the enhanced dissipation in the boundary layer gives a larger dissipation from the moving air, and a scaling law of the decay of the coin's angle that is in much better accord with that observed. However, rolling frictional drag with the surface is an additional damping mechanism that could well dominate that from circulating air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...